1. Übung zur Elementaren Stochastik

Prof. Dr. Ehrhard Behrends, WS 2009/10

Ausgabe: 13. 10. 2009

Abgabe: am 20. 10. 2009 bis 16.00 Uhr in den Fächern der Tutoren

1. Wir untersuchen einen Erzeuger von Pseudozufallszahlen (vgl. Skript, Seite 8). Gegeben sind also a_0, a_1 und m, n_0 , und für $k \in \mathbb{N}_0$ wird n_{k+1} rekursiv durch

$$n_{k+1} := (n_k a_0 + a_1) \bmod m$$

definiert. Man beweise, dass die Folge (n_k) schließlich periodisch wird: Es gibt $k_0, l \in \mathbb{N}$, so dass $n_{k+l} = n_k$ für alle $k \ge k_0$.

Finden Sie auch eine obere Schranke für l.

In den folgenden Aufgaben geht es um das wichtige Thema " σ -Algebren".

- 2. Beweise oder widerlege:
- a) Sind \mathcal{E}_1 und \mathcal{E}_2 σ -Algebren auf einer Menge Ω , so auch $\mathcal{E}_1 \cup \mathcal{E}_2$.
- b) Sind \mathcal{E}_1 und \mathcal{E}_2 σ -Algebra auf einer Menge Ω , so auch $\mathcal{E}_1 \cap \mathcal{E}_2$.
- c) Sind \mathcal{E}_1 und \mathcal{E}_2 σ -Algebren auf einer Menge Ω , so auch

$$\{E_1 \cap E_2 \mid E_1 \in \mathcal{E}_1, E_2 \in \mathcal{E}_2\}.$$

- **3.** Es sei \mathcal{E} eine σ -Algebra auf \mathbb{R}^2 , die alle offenen Kreisscheiben enthält. Dann enthält sie auch alle offenen Rechtecke.
- 4. Bestimmen Sie alle σ -Algebren auf einer 3-elementigen Menge.

Für den mathematischen "Arbeitsspeicher" \dots

 $Auf\ die\ folgenden\ Fragen\ sollte\ man\ jederzeit\ eine\ richtige\ Antwort\ geben\ k\"{o}nnen.$

Was ist eine σ -Algebra? Wie ist die σ -Algebra der Borelmengen definiert? Was ist ein Wahrscheinlichkeitsraum?